Multistage Portfolio Optimization with Var as Risk Measure
نویسندگان
چکیده
Multistage portfolio optimization models are difficult to solve when market risk is measured by Value-at-Risk (VaR), this paper proposes a soft method for solving VaR-based portfolio optimization models based on a soft optimization approach. In order to demonstrate the validity of the proposed soft method, we perform portfolio management experiments with real data from the New York stock market, and compare the performances of the strategies suggested by the soft method with those of two other investment strategies.
منابع مشابه
Using MODEA and MODM with Different Risk Measures for Portfolio Optimization
The purpose of this study is to develop portfolio optimization and assets allocation using our proposed models. The study is based on a non-parametric efficiency analysis tool, namely Data Envelopment Analysis (DEA). Conventional DEA models assume non-negative data for inputs and outputs. However, many of these data take the negative value, therefore we propose the MeanSharp-βRisk (MShβR) model...
متن کاملRobust Portfolio Optimization with risk measure CVAR under MGH distribution in DEA models
Financial returns exhibit stylized facts such as leptokurtosis, skewness and heavy-tailness. Regarding this behavior, in this paper, we apply multivariate generalized hyperbolic (mGH) distribution for portfolio modeling and performance evaluation, using conditional value at risk (CVaR) as a risk measure and allocating best weights for portfolio selection. Moreover, a robust portfolio optimizati...
متن کاملMinimizing CVaR and VaR for a Portfolio of Derivatives∗
Value at risk (VaR) and conditional value at risk (CVaR) are the most frequently used risk measures in current risk management practice. As an alternative to VaR, CVaR is attractive since it is a coherent risk measure. We analyze the problem of computing the optimal VaR and CVaR portfolios. In particular, we illustrate that VaR and CVaR minimization problems for derivatives portfolios are typic...
متن کاملIncorporating Asymmetric Distributional Information in Robust Value-at-Risk Optimization
Value-at-Risk (VaR) is one of the most widely accepted risk measures in the financial and insurance industries, yet efficient optimization of VaR remains a very difficult problem. We propose a computationally tractable approximation method for minimizing the VaR of a portfolio based on robust optimization techniques. The method results in the optimization of a modified VaR measure, Asymmetry-Ro...
متن کاملVaR optimal portfolio with transaction costs
We consider the problem of portfolio optimization under VaR risk measure taking into account transaction costs. Fixed costs as well as impact costs as a nonlinear function of trading activity are incorporated in the optimal portfolio model. Thus the obtained model is a nonlinear optimization problem with nonsmooth objective function. The model is solved by an iterative method based on a smoothi...
متن کامل